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Top conferences, e.g.,

= CVPR (held every year since 1985)

= ECCV (held on even years since 1990)
= |CCV (held on odd years since 1987)



Brief Statistics and Milestones

SR related papers
in CVPR2018
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Superscript: Number of citations from Google Scholar until Apr. 10, 2018 6:30PM.
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Trend (1/4) --- Trained Upscaling
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Directly start from
low-resolution image:
* Faster

* Less parameters

* Learn the upscaling
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Trend (2/4) --- Skip Connection (Residual Blocks)
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Trend (3/4) --- Sub-Pixel for Upscaling

Low-resolution image (input) n, feature maps n., feature maps r¢ channels High-resolution image (output)
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Hidden layers Sub-pixel convolution layer

The sub-pixel convolutional layer is faster than the deconvolution layer
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Trend (4/4) --- Perceptual Loss

Original SRCNN (L2 loss SRResNet (L2 loss VGG feature loss SRGAN
with 3-layer net) with deep ResNet) . (Adversarial loss)

Y

Perceptual loss
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State-of-the-art Performance

R ~ ~ The state-of-art-work
CVPR Sub-Pixel : SRGAN®>: )EDSR in visual quality, but
VDSR4 DRCN68 ! LapSRN>® DRRN32 with low PSNR
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They share similar structure: res blocks, skip connection, and post upscaling
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State-of-the-art Performance
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SRGAN --- First Introduce GAN to SR

i

PixelShuffler x2

skip connection

bicubic SRResNet SRGAN
(21.59dB/0.6423) (23.53dB/0.7832) (21.15dB/0.6868) _
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EDSR --- Winner of NTIRE 2017

M21.JULY VHONOLULU, HAWAII

NTIRE 201/

New Trends in Image Restoration and Enhancement workshop
and challenge on image super-resolution

- f

in conjunction with CVPR 207/
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EDSR --- Network Structure

VDSR [11] SRResNet [14] EDSR+ (Ours)
(32.82dB/0.9623)  (34.00dB/0.9679)  (34.78 dB /0.9708)
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EDSR vs. SRGAN --- Residual Block

Remove batch normalization:

BN normalizes the features, it
gets rid of range flexibility

Conv from networks by normalizing

RelU the features.
 Save approximately 40% of

/ memory usage during training
v
RelLU l l

'

X1+1

Original SRGAN EDSR
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Summary
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Current Trends: Existing Problems:

* Trained upscaling * Measurement metric, e.g., PSNR is
e Skip connection not consistent to human evaluation
e Sup-pixel * Assumption on bicubic downscaling
* Perceptual loss * Lack of fine texture

It seems more and more difficult to make improvement to the
traditional SR problem, especially in PSNR. It may be the time
to explore new directions.
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Interesting Papers on Single Image SR in CVPR 2018
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Supervised learning = Unsupervised learning

A. Shocher et al., “Zero-Shot” Super-Resolution using Deep Internal Learning

Bicubic downscaling 2 Unknown downscaling

K. Zhang et al., Learning a Single Convolutional Super-Resolution Network for Multiple Degradations

One-way upscaling = Iterative up/downscaling

M. Haris et al., Deep Back-Projection Networks For Super-Resolution

()



Supervised learning = Unsupervised learning

A. Shocher et al., “Zero-Shot” Super-Resolution using Deep Internal Learning

Supervised Unsupervised

Motivation :

handling poor-quality
low-resolution images,
e.g., old photos, noisy
images, biological data,
and other images
Where the downscaling _
process is unknown or : ° Testimage ] _—

non-ideal. / -aiff}«_.L , _.

\

Train on HR-LR pairs extracted from
the test image itself

[ ¢ S [ Test |mage[
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Supervised learning = Unsupervised learning

A. Shocher et al., “Zero-Shot” Super-Resolution using Deep Internal Learning

The proposed
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Bicubic downscaling 2 Unknown downscaling

K. Zhang et al., Learning a Single Convolutional Super-Resolution Network for Multiple Degradations

Nonlinear Mapping HR Subimages

Motivation :

Just like the paper title,
breaking the assumption
that a low-resolution
image is bicubicly
downsampled from a
high-resolution image.
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Single upscaling = Iterative up/downscaling

M. Haris et al., Deep Back-Projection Networks For Super-Resolution

Back-Projection Slages

Motivation : |
Iterative error feedback ) et
by back-projection, '
addressing the mutual
dependencies of low-
and high-resolution
images.

Ix3 1x1
o

conv cony

Up projection
Down projection
Up projection
Up projection
Up projection

The dense inter-layer connections alleviate the vanishing gradient
problem, produce improved feature, and encourage feature reuse.
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