Deep Learning based Super-Resolution

Zhifei Zhang

Keywords

- Deep learning
- Super-resolution (SR)
- Natural images
- Top conferences, e.g.,
 - CVPR (held every year since 1985)
 - ECCV (held on even years since 1990)
 - ICCV (held on odd years since 1987)

Brief Statistics and Milestones

CVPR			Sub-Pixel ²¹⁹ VDSR ⁴¹³ DRCN ¹⁶⁸	SRGAN ⁴⁵⁹ EDSR ⁴⁰ LapSRN ⁵³ DRRN ³²	SR related papers in CVPR2018
ECCV	SRCNN ⁷⁴³		Perceptual Loss ⁴⁶⁵ FSRCNN ¹³⁷		2 3 9
ICCV		SCN ¹⁷¹		ENet ³² MemNet ⁹ SRDenseNet ⁸	 Natural Image Face Image Video
NIPS		ShCNN ³²	SCKN ²⁰ RED ¹⁰⁶	DCSCN ³	
ICLR			Suff. Stat. ⁴⁸	Amortized MAP ⁷¹	Hyperspectral Image
	2014	2015	2016	2017	Apr. 10, 2018 6:30 PM

Superscript: Number of citations from Google Scholar until Apr. 10, 2018 6:30PM.

Trend (1/4) --- Trained Upscaling

Directly start from low-resolution image:

- Faster
- Less parameters
- Learn the upscaling process

Trend (2/4) ---- Skip Connection (Residual Blocks)

Skip low-level features to high-level layers:

- Assist identity mapping
- Alleviate vanishing gradient problem
- Finer texture

Trend (3/4) --- Sub-Pixel for Upscaling

The sub-pixel convolutional layer is faster than the deconvolution layer

Trend (4/4) ---- Perceptual Loss

State-of-the-art Performance

The state-of-art-work in visual quality, but with low PSNR

> The state-of-artwork in PSNR, but visually blurry

They share similar structure: res blocks, skip connection, and post upscaling

State-of-the-art Performance

SRGAN ---- First Introduce GAN to SR

skip connection

bicubic (21.59dB/0.6423)

SRGAN (21.15dB/0.6868)

original

EDSR ---- Winner of NTIRE 2017

🖞 21.JULY 💡 HONOLULU, HAWAII

New Trends in Image Restoration and Enhancement workshop and challenge on image super-resolution in conjunction with CVPR 2017

EDSR ---- Network Structure

Bicubic (30.80 dB / 0.9537)

VDSR [11]

(32.82 dB / 0.9623)

SRResNet [14]

(34.00 dB / 0.9679)

EDSR vs. SRGAN ---- Residual Block

Remove batch normalization:

- BN normalizes the features, it gets rid of range flexibility from networks by normalizing the features.
- Save approximately 40% of memory usage during training

Summary

Current Trends:

- Trained upscaling
- Skip connection
- Sup-pixel
- Perceptual loss

Existing Problems:

- Measurement metric, e.g., PSNR is not consistent to human evaluation
- Assumption on bicubic downscaling
- Lack of fine texture

It seems more and more difficult to make improvement to the traditional SR problem, especially in PSNR. It may be the time to explore new directions.

Interesting Papers on Single Image SR in CVPR 2018

Supervised learning → Unsupervised learning

A. Shocher et al., "Zero-Shot" Super-Resolution using Deep Internal Learning

Bicubic downscaling \rightarrow Unknown downscaling

K. Zhang et al., Learning a Single Convolutional Super-Resolution Network for Multiple Degradations

One-way upscaling \rightarrow Iterative up/downscaling

M. Haris et al., Deep Back-Projection Networks For Super-Resolution

Supervised learning → Unsupervised learning

A. Shocher et al., "Zero-Shot" Super-Resolution using Deep Internal Learning

Motivation : handling poor-quality low-resolution images, e.g., old photos, noisy images, biological data, and other images where the downscaling process is unknown or non-ideal.

Supervised learning → Unsupervised learning

A. Shocher et al., "Zero-Shot" Super-Resolution using Deep Internal Learning

Low-resolution image

The proposed

Bicubic downscaling \rightarrow Unknown downscaling

K. Zhang et al., Learning a Single Convolutional Super-Resolution Network for Multiple Degradations

Motivation : Just like the paper title, breaking the assumption that a low-resolution image is bicubicly downsampled from a high-resolution image.

Single upscaling \rightarrow Iterative up/downscaling

M. Haris et al., Deep Back-Projection Networks For Super-Resolution

Motivation : Iterative error feedback by back-projection, addressing the mutual dependencies of lowand high-resolution images.

The dense inter-layer connections alleviate the vanishing gradient problem, produce improved feature, and encourage feature reuse.

